极紫外、软X射线CCD相机-ALEX-i 成像系列
用于XUV/EUV/X射线能段的成像应用
- 产地: 德国
- 型号: ALEX-i 1k1k、ALEX-i 2k2k、ALEX-i 2k2k plus、ALEX-i 4k4k
- 品牌: greateyes
用于XUV/EUV/X射线能段的成像应用
公司介绍
成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。
greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。
产品介绍
出身于柏林的ALEX是德国greateyes公司最新研发,应用于极紫外,真 空紫外和X射线能段的光谱及影像相机。ALEX集成了目前最前沿的低噪 声电子系统和超低温制冷技术,同时保持了紧凑小巧的设计。全新的设计 允许从50 kHz至5 MHz灵活地选择所需读出速度。18-bit 的模数转换能 够利用CCD传感器的全动态范围,以达到更好表现和更高的信噪比。为 匹配不同应用的需求,该相机包括多种类型的传感器可供用户选择。同时 ALEX的低噪声使之成为极弱信号条件下所需的理想相机,它将给您的 光谱学和影像研究带来前所未有的可能性。
特征优势
◆ 制冷温度低至-90℃;
◆ GigE & USB3.0 双数据接口;
◆ 超高真空兼容,低至10-10mbar;
◆ 量子效率高达98%;
◆ 18 bit模数转换
◆ 双读出头,四读出头
规格参数
通用参数
读出频率 | 50 kHz, 250kHz, 1 MHz, 3 MHz(5 MHz 用于查看模式; 频率可定制) |
AD 转换分辨率 | 18-bit |
线性度 | 优于 99% |
CCD 外延层厚度 | 标准15 μm, 深耗尽类型40 μm |
真空馈通法兰 | models IsO-F DN63,刀日封接 CF DN63,CF DN100,CF DN160 |
真空兼容性 | 刀口封接法兰: 10-10 mbar (超高真空) |
烘烤温度 | Max. +80 °C |
法兰距 | 1k1k camera with CF DN63: 6 mm; 2k2k with CF DN63: 5 mm; 2k2k plus & 4k4k cameras with CF DN160:-27 mm (all disctance can be customised |
温度监控 | 于CCD 传感器上,及半导体制冷的热端 |
数据传输 | 千兆以太网GigE,USB3.0 |
软件 | greateyes Vision 软件(Windows 7 / 10) |
SDK 和驱动 | DLL for Windows; LabVIEW, EPICS, Linux, Python以及Tango驱动 (可选) |
TTL 接口信号 | Sync out, shutter out, 2 external trigger in |
工作条件 | 环境温度: 0°C to 35°C ambient, 相对湿度<80% (无结露) |
供电 | 1k1k & 2k2k: 80-264 VAC (115/230典型值), 47-63 Hz (50/60典型值), max. 1.1 A (230 V) / 1.9 A (115 V) 2k2k plus & 4k4k: 85-264 VAC (115/230典型值), 47-63 Hz (50/60典型值), max. 1.9 A (230 V) / 3.8 A (115 V) |
认证 | CE |
尺寸 | 8.3 cm (3.27ʺ) × 10.0 cm (3.94ʺ) × 10.9 cm (4.29ʺ) (W × H × L, 1k1k & 2k2k camera body) 13.7 cm (5.39ʺ) × 13.7 cm (5.39ʺ) × 13.3 cm (5.24ʺ) (W × H × L, 2k2k plus & 4k4k camera body) |
重量 | 2.9 kg (1k1k & 2k2k, CF DN63) / 4.3 kg (1k1k & 2k2k, CF DN 100) / 12.5kg (4k4k, CF DN160) |
相机型号
ALEX-i 1k1k | ALEX-i 2k2k | ALEX-i 2k2k plus | ALEX-i 4k4k | |||||
芯片类型 | FI BI | BI DD | FI BI | BI DD BI UV1 | BI | BI | BI DD BI UV1 | |
像素规格(标称) | 1024 x 1024(FI) | 2048 x 2052 | 2048 x 2064 | 4096 x 4112 | ||||
像素尺寸 | 13 μm × 13 μm | 13.5 μm × 13.5 μm | 15 μm × 15 μm | 15 μm × 15 μm | ||||
满井容量 | 100 keˉ | 120 keˉ | 100 keˉ | 150 keˉ | 150 keˉ | 150 keˉ | 350 keˉ | |
读出噪声典型值(eˉ) @ 50 kHz | 3.4 | 3.8 | 4.6 | 4.8 | 3.0 | |||
可调增益(counts/eˉ) Standard mode High capacity mode | 1 | 1 | 0.6 | 0.6 | 1 | |||
暗电流(eˉ/pixel/s) | @-100°C 0.00015 0.0005 | @-90°C | @-90°C 0.00008 | @-90°C | ||||
芯片等级 | Grade 0 or grade 1 (标准) |
选择法兰类型
可选配件及软件
典型应用
· X 射线断层成像
· 傅立叶变换全息图
· X 射线荧光透视成像
· 相干衍射成像(CDI)
· 电子叠层衍射(Ptychography)成像
· 掠入射小角 X 射线散射(GISAXS)
资料/文献
GE_ALEX_i成像系列_datasheet 2021-5-12.pdf
文献
1. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114
2. P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)
3. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)
4. A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)
5. T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116
6. C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272
7. H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)
8. M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002
9. I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)
10. S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65
11. A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483
12. P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578
13. I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015
14. T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8
型号参数:
ALEX-i 1k1k | ALEX-i 2k2k | ALEX-i 2k2k plus | ALEX-i 4k4k | |||||
芯片类型 | FI BI | BI DD | FI BI | BI DD BI UV1 | BI | BI | BI DD BI UV1 | |
像素规格(标称) | 1024 x 1024(FI) | 2048 x 2052 | 2048 x 2064 | 4096 x 4112 | ||||
像素尺寸 | 13 μm × 13 μm | 13.5 μm × 13.5 μm | 15 μm × 15 μm | 15 μm × 15 μm | ||||
满井容量 | 100 keˉ | 120 keˉ | 100 keˉ | 150 keˉ | 150 keˉ | 150 keˉ | 350 keˉ | |
读出噪声典型值(eˉ) @ 50 kHz | 3.4 | 3.8 | 4.6 | 4.8 | 3.0 | |||
可调增益(counts/eˉ) Standard mode High capacity mode | 1 | 1 | 0.6 | 0.6 | 1 | |||
暗电流(eˉ/pixel/s) | @-100°C 0.00015 0.0005 | @-90°C | @-90°C 0.00008 | @-90°C | ||||
芯片等级 | Grade 0 or grade 1 (标准) |
· X 射线断层成像
· 傅立叶变换全息图
· X 射线荧光透视成像
· 相干衍射成像(CDI)
· 电子叠层衍射(Ptychography)成像
· 掠入射小角 X 射线散射(GISAXS)
GE_ALEX_i成像系列_datasheet 2021-5-12.pdf
文献:
1. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114
2. P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)
3. P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)
4. A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)
5. T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116
6. C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272
7. H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)
8. M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002
9. I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)
10. S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65
11. A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483
12. P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578
13. I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015
14. T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8