高灵敏度、深度制冷CCD相机(UV/VIS/NIR)

紫外、可见、近红外高灵敏度冷却CCD相机 ELSE-i系列

用于小动物活体成像,in vivo imaging,活体动物的生物发光和荧光检测,中子探测,高分辨X射线CT灯成像应用

  • 产地: 德国
  • 型号: ELSE-i 1k1k, ELSE-i 2k2k, ELSE-i 2k2k plus, ELSE-i 4k4k
  • 品牌: greateyes

公司介绍:

成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。

greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。

产品介绍:

greateyes基于独特的平台概念,提供用于紫外、可见和近红外的成像和光谱应用的大面阵相 机。深度冷却、高品质的CCD相机传感器具有超低噪声,可优化微弱信号的探测。采用不同 的像素模式、传感技术以及传感涂层使成像或光谱应用优化。

全帧CCD传感器集成在真空密闭腔室里,拥有多级半导体冷却以及单一光学窗口。相机提供丰 富的功能,例如灵活的像素联用操作、不同的触发和同步模式、可调的软件基线、传感器和散 热系统的温度监控。


主要特点:

  • 结构紧凑

  • 灵活的联用模式

  • 量子化效率高达98%

  • 满井容量高达700.000 eˉ

  • 深度制冷温度低至-100°C

  • 读出噪声低至3.5 eˉ

  • 18 bit 动态范围

  • 水冷和强制风冷


典型应用:

  • 天文观测

  • LIBS 光谱仪

  • 中子层析成像

  • EL / PL 成像

  • 超冷量子研究

  • 活体荧光生物成像

北京众星联恒科技有限公司

左图是一只老鼠的散射图像。右图为使用ELSE-i 1k1kDD NIR相机和特定滤光片对淋巴结肿瘤组织中积累的荧光标记染料得到的散射和荧光检测的叠加图。




性能参数:


ELSE-i 1k1k

ELSE-i 2k2k

ELSE-i 2k2k plus

ELSE-i 4k4k

紫外波段增强

BI UV3


                        BI UV3


BI UV2

BIUV4

可见光波段增强

FI

BI BR

BI MID


FI

BI MID


BI MID


FI

BI BR

BI MID


近红外波段增强


DD NIR

DD MU2


DD NIR

DD MU2



DD MU2

像素规格( 标称)

1024 × 1024(FI)
1056 x 1027(others)

2048 × 2052

2048 × 2064

4096× 4112

像素尺寸

13 μm × 13 μm

13.5 μm × 13.5 μm

15 μm × 15 μm

15 μm × 15 μm

满井容量

100 keˉ

120 keˉ

100 keˉ

150 keˉ

150 keˉ

150 keˉ

350 keˉ

读出噪声典型值(eˉ) @ 50 kHz
@ 1 MHz
@ 3 MHz


3.4
6.7
13.1


3.8

8.7
17.8


4.6
8.5
17.0


4.8
9.5
20.4


3.0
6.3
12.5

可调增益(counts/eˉ)

Standard mode

High capacity

1


1

0.34


0.6

0.2


0.6

0.2


1

0.34

暗电流( eˉ/pixel/s)

@-100°C

0.00015           0.0005

@-90°C

0.0001             0.001

@-90°C

0.00008

@-90°C

0.00008                0.00006

芯片等级

Grade 0 or grade 1 (标准)


QE曲线:北京众星联恒科技有限公司

典型应用:


  • 活体荧光生物成像

  • 天文观测

  • LIBS 光谱仪

  • 中子层析成像

  • EL / PL 成像

  • 超冷量子研究


北京众星联恒科技有限公司GE_ELSE_i成像系列_datasheet 2021-5-11.pdf


文献:

1.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114

2.  P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)

3.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)

4.  A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)

5.  T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116

6.  C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272

7.  H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)

8.  M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002

9.  I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)

10.  S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65 

11.  A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483

12.  P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578

13.  I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015

14.  T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8


首页
产品
新闻
联系