用于极紫外实验的多层膜镀膜技术
EUV多层膜是为像高次谐波应用这样的实验设计和制作的。在本文中,我们将展示适用于8nm -50nm波段的 Ru/B4C 、 Mo/Si、 Zr/Al Si和 SiC/Mg 多层膜的最新成果。这些多层膜都容易根据实验的具体要求定制参数,包括入射角、峰值波长和带宽。
01
引言
02
8-12nm波段适用的多层膜
图1. Pd/B4C(蓝线)、Ru/B4C(红线)和Mo/B4C(绿线)多层膜的反射率;(a) 8 nm、(b) 10 nm和(c) 12 nm。
图2. 设计用于在入射角为45°,峰值波长为8.8 nm时的Ru/B4C多层膜(蓝点)的反射率谱图,红线为假设层间粗糙度为0.4 nm时的的模拟反射率。
03
波长13.5nm适用的多层膜
图3. Mo/Si多层膜反射率实测图
入射角为6°
入射角为45°
图4. MoSi2/Si窄带多层膜和Ru/Si宽带多层膜的反射率(假设层间粗糙度为0.7 nm)
04
17nm-25nm波段适用的多层膜
图5. Zr/Al-Si(蓝线)、C/Al-Si(红线)和Y/Al-Si(绿线)的模拟反射率
图6. (a) (d)高反射率、(b) (e)窄带反射率和(c) (f)宽带反射率Zr/Al-Si(蓝线)和Mo/Si(红虚线)多层膜的计算反射曲线。(a)、(b)和(c)AOI=0℃,(d)、(e)和(f)AOI=45℃。
注:图5和图6中的计算是假设在像表面无氧化、层间光滑等理想情况下的得到的。
窄带Zr/Al-Si多层膜在入射角为45度时的反射率测量结果如图7所示,峰值波长为(a) 18 nm和(b) 21 nm。表面氧化和层间粗糙度大约为4nm和0.5 nm。该窄带镜在18 nm处的反射率峰值为45%,带宽(半峰全宽FWHM)为0.7 nm,在21 nm处的反射率峰值为34%,带宽(半高全宽FWHM)为0.8 nm。
图7. Zr/Al-Si多层膜在入射角为45°时的反射率
18nm优化
21nm优化
05
25nm-50nm波段适用的多层膜
图8. SiC/Mg窄带多层膜反射率的实测结果;入射角为6度。
图9. Mo/Si宽带多层膜的反射率(蓝线)和反射相位(红虚线),6度入射
两块多层膜
指定覆盖层
06
结论
07
应用实例
NTT 定制 EUV/X-ray 光学元件:
左右滑动查看更多
如有任何需要咨询的内容,请联系我们。
参考文章:
[1] E. Spiller, “Reflective multilayer coatings for the far uv region,” Appl. Opt. 15, 2333
(1976).
[2] T. W. Barbee, et al., “Molybdenum-silicon multilayer mirrors for the extreme
ultraviolet,” Appl. Opt. 24, 883 (1985).
[3] J. H. Underwood, et al., “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32,
6985 (1993).
[4] M. Singh and J. J. M. Braat, “Capping layers for extreme-ultraviolet multilayer
interference coatings,” Opt. Lett. 26, 259 (2001).
[5] H. Takenaka and T. Kawamura, “Thermal stability of Mo/C/Si/C multilayer soft X-ray
mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381 (1996).
[6] H. Takenaka, et al., “Soft-x-ray reflectivity and heat resistance of SiC/Mg multilayer,” J.
Electron Spectrosc. Relat. Phenom. 144-147, 1047 (2005).
[7] M. Grisham, et al., “Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to
intense 46.9-nm laser pulses,” Opt. Lett. 29, 620 (2004).
[8] K. M. Skulina, et al., “Molybdenum/beryllium multilayer mirrors for normal incidence
in the extreme ultraviolet,” Appl. Opt. 34, 3727 (1995).
[9] B. Sae-Lao and C. Montcalm, “Molybdenum–strontium multilayer mirrors for the
8–12-nm extreme-ultraviolet wavelength region,” Opt. Lett. 26, 468 (2001).
[10] C. Montcalm, et al., “In situ reflectance measurements of soft-x-ray/extreme -ultraviolet
Mo/Y multilayer mirrors,” Opt. Lett. 20, 1450 (1995).
[11] D. L. Windt and E. M. Gullikson, “Pd/B4C/Y multilayer coatings for extreme
ultraviolet applications near 10 nm wavelength,” Appl. Opt. 54, 5850 (2015).
[12] J. H. Underwood, et al., “Calibration and standards beamline 6.3.2 at the Advanced
Light Source,” Rev. Sci. Instrum. 67, 3372 (1996).
[13] D. L. Windt, and J. A. Bellotti, “Performance, structure, and stability of SiC/Al
multilayer films for extreme ultraviolet applications,” Appl. Opt. 48, 4932 (2009).
[14] E. Meltchakov, et al., “Development of Al-based multilayer optics for EUV,” Appl.
Phys. A 98, 111 (2010).
[15] Q. Zhong, et al., “Enhancement of the reflectivity of Al/Zr multilayers by a novel
structure,” Opt. Express, 21, 14399 (2013)
[16] M. Hatayama, et al., “Wide-range narrowband multilayer mirror for selecting a
single-order harmonic in the photon energy range of 40–70 eV,” Opt. Express 24,
14546 (2016).
[17] H. Ye, et al., “An overview of the development of Al-Si-Alloy based material for
engine applications,” Eng. Perf. 12, 288 (2003).
[18] M. Hatayama, et al., “Broadband extreme ultraviolet multilayer mirror for
supercontinuum light at a photon energy of 35-65 eV,” Appl. Opt. 48, 5464 (2009).
[19] H. Mashiko, et al., “Extreme ultraviolet supercontinua supporting pulse durations of
less than one atomic unit of time,” Opt. Lett. 34, 3337 (2009).