NTT-AT X射线菲涅尔波带片加工技术及在显微成像技术中的应用
在X射线显微成像研究领域中,随着科研人员孜孜不倦的创新追求,以及各种成像方法的交叉和迭代,成像方法和手段被细分为了很多的子类。目前主流的X射线显微成像方法主要有:全场透视显微(TXM)、扫描透视显微(STXM)、相干衍射成像(X-ray CDI)、X射线荧光显微(XFM)、X射线光谱显微(XSM)、X射线光电子(能谱)显微(XPEEM)等。此外,基于这些方法论的交叉借鉴和拓展,结合同步辐射光源的高品质光束,显微的谱学和衍射方法也得到了很大的发展。
但无论实验技术如何细分,前端照明光的调制、和后端各类光(电)信号的收集和探测,都是实验中最被关注和考虑的部分。一般而言,前端照明光通常采用毛细管、椭球镜、菲涅尔波带片(FZP)、负折射镜等聚焦光学组件来获得照明微束,而后端光学器件则根据不同的实验目的来选取,主要有FZP、相移环、光栅等。在众多的光学组件中, FZP是为数不多的,可同时用于聚焦和成像用途的光学器件。对于20-30nm极高空间分辨要求的应用而言,需要FZP的最外环宽度达到20-30nm尺度,同时保证一定的厚度,即对FZP的“深宽比”提出了很高的要求。
得益于在微纳、精密加工方面多年的技术积累,日本NTT-AT公司目前可以向广大科研用户提供各种规格的FZP产品及定制服务。NTT-AT公司的FZP由干法蚀刻的Ta组成,吸收体边缘锐利,成像缺陷少。同时,基于SiC膜的FZP具有出色的高耐X射线辐射性,能理想地应用于X射线显微镜、X射线微束聚焦和成像。
目前NTT-AT公司可提供多款FZP标准品,详细规格参数如下
同时,也可根据不同的需求提供定制的FZP,如:
1. 高分辨FZP
菲涅耳波带板(FZP)直径:250微米,Ta厚度:125纳米,最外区域宽度:25纳米,膜:SiC 2.0微米
2. 高效率(高深宽比)FZP
菲涅耳波带板(FZP)直径:100微米,Ta厚度:2.5微米,最外区域宽度:250纳米,膜:SiN 2.0微米
3. 阶梯型(多级型)FZP
菲涅耳波带板(FZP)直径:100微米,Ta厚度:4.0微米,最外区域宽度:400纳米,膜:SiC 2.0微米
NTT-AT公司FZP产品典型应用案例
· 离焦投影放大吸收/相衬显微成像
典型光路如下:
方法特点:
· 高空间分辨
· 高灵敏度
· 视场可调
· 吸收、相位/相差成像
· 定量相敏方法
· 和传统显微光路兼容
小结:
该显微方法对轻元素的灵敏度比传统的吸收衬度显微方法获得的灵敏度高约2个数量级,且很容易将定量相敏模式拓展到普通X射线显微光路,在生物学和材料科学领域具有广泛的应用前景。
详情参见:
W. Yashiro, Y. Takeda, A. Takeuchi, Y. Suzuki, and A. Momose, “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating,” Phys. Rev. Lett. 103, 180801 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.180801
Nobuhito Nango, Shogo Kubota, Akihisa Takeuchi, Yoshio Suzuki, Wataru Yashiro, Atsushi Momose, and Koichi Matsuo, “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone,” Biomed. Opt. Express 4, 917 (2013);
http://dx.doi.org/10.1364/BOE.4.000917
· 级联FZP实现高能X射线聚焦
典型光路如下:
方法特点:
· 级联FZP
· 高能(30keV)聚焦
· 高能(30keV)相移FZP
· 亚微米尺度扫描成像
小结:
(1) 单片Ta材质FZP可作为高能(30keV)相移FZP;
(2) 级联Ta材质FZP可作为高能(30keV)聚焦;
详情参见:
Yasushi Kagoshima, Hidekazu Takano, Takahisa Koyama, Yoshiyuki Tsusaka and Akihiko Saikubo, “Tandem-Phase Zone-Plate Optics for High-Energy X-ray Focusing,” Jpn. J. Appl. Phys. 50 022503 (2012);
http://dx.doi.org/10.1143/JJAP.50.022503
· 基于FZP/毛细管的Mössbauer谱仪微区mapping
典型光路:
方法特点:
· 实验室Mössbauer谱仪微区分析
· 亚微米水平的空间分辨
小结:
(1) 利用毛细管和波带片耦合放射源,实现实验室Mössbauer谱仪微区分析;
(2) 可用于对太阳能电池等器件的亚微米空间分辨的mapping检测;
详情参见:
Yutaka Yoshida , Kazuo Hayakawa, Kenichi Yukihira, Masahiro Ichino, Yuki Akiyama, Hiroto Kumabe, Hiroyoshi Soejima, “Development and applications of “Mössbauer cameras”,” Hyperfine Interact. 198, 23 (2010);
http://dx.doi.org/10.1007/s10751-010-0228-x
· 微区衍射(纳米衍射)
典型光路:
方法特点:
· 激光泵浦- X-ray微束探针
· 时间分辨衍射
· 原位纳米衍射
· 纳米结构mapping
· 光电子能谱微区扫描显微
小结:
(1) 基于泵浦-探针方式,在同步辐射实现原位时间分辨衍射测量;
(2) 利用波带片获得亚微米光束,以掠入射的方式,可实现薄膜样品的原位纳米衍射测量;
(3) 利用波带片获得亚微米光束,对纳米结构进行mapping,可实现显微成像和光电子能谱测量;
详情参见:
Nobuhiro Yasuda, Yoshimitsu Fukuyama, Shigeru Kimura, Kiminori Ito, Yoshihito Tanaka, Hitoshi Osawa, Toshiyuki Matsunaga, Rie Kojima, Kazuya Hisada, Akio Tsuchino, Masahiro Birukawa, Noboru Yamada, Koji Sekiguchi, Kazuhiko Fujiie, Osamu Kawakubo and Masaki Takata, “System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process,” Rev. Sci. Instrum. 84, 063902 (2013);
http://dx.doi.org/10.1063/1.4807858
K. Horiba, Y. Nakamura, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, K. Amemiya, Y. Senba and H. Ohashi, “Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis,” Rev. Sci. Instrum. 82, 113701 (2011);
http://dx.doi.org/10.1063/1.3657156
Paper lists
Nobuhito Nango, Shogo Kubota, Akihisa Takeuchi, Yoshio Suzuki, Wataru Yashiro, Atsushi Momose, and Koichi Matsuo, “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone,” Biomed. Opt. Express 4, 917 (2013);
http://dx.doi.org/10.1364/BOE.4.000917
K. Nogita, H. Yasuda, M. Yoshiya, S.D. McDonald, K. Uesugi, A. Takeuchi, and Y. Suzuki, “The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys,” J. Alloy Compd. 489, 415 (2010);
http://dx.doi.org/10.1016/j.jallcom.2009.09.138
Yasushi Kagoshima, Hidekazu Takano, Takahisa Koyama, Yoshiyuki Tsusaka and Akihiko Saikubo, “Tandem-Phase Zone-Plate Optics for High-Energy X-ray Focusing,” Jpn. J. Appl. Phys. 50 022503 (2012);
http://dx.doi.org/10.1143/JJAP.50.022503
extreme-ultraviolet scatterometry microscope
Tetsuo Harada, Yusuke Tanaka, Takeo Watanabe, Hiroo Kinoshita, Youichi Usui and Tsuyoshi Amano, “Phase defect characterization on an extreme-ultraviolet blank mask using microcoherent,” J. Vac. Sci. Technol. B 31, 06F605 (2013);
http://dx.doi.org/10.1116/1.4826249
Nobuhiro Yasuda, Yoshimitsu Fukuyama, Shigeru Kimura, Kiminori Ito, Yoshihito Tanaka, Hitoshi Osawa, Toshiyuki Matsunaga, Rie Kojima, Kazuya Hisada, Akio Tsuchino, Masahiro Birukawa, Noboru Yamada, Koji Sekiguchi, Kazuhiko Fujiie, Osamu Kawakubo and Masaki Takata, “System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process,” Rev. Sci. Instrum. 84, 063902 (2013);
http://dx.doi.org/10.1063/1.4807858
Yoshio Suzuki and Akihisa Takeuchi, “X-ray holographic microscopy with Fresnel zone plate objective lens and double-diamond-prism interferometer,” Jpn. J. Appl. Phys. 53 122501 (2014);
http://dx.doi.org/10.7567/JJAP.53.122501
Masanori Tomitaa , Munetoshi Maeda, Katsumi Kobayashi and Hideki Matsumoto, “Dose Response of Soft X-Ray-Induced Bystander Cell Killing Affected by p53 Status,” Radiation Res. 179, 200 (2013);
http://dx.doi.org/10.1667/RR3010.1
W. Yashiro, Y. Takeda, A. Takeuchi, Y. Suzuki, and A. Momose, “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating,” Phys. Rev. Lett. 103, 180801 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.180801
Yutaka Yoshida , Kazuo Hayakawa, Kenichi Yukihira, Masahiro Ichino, Yuki Akiyama, Hiroto Kumabe, Hiroyoshi Soejima, “Development and applications of “Mössbauer cameras”,” Hyperfine Interact. 198, 23 (2010);
http://dx.doi.org/10.1007/s10751-010-0228-x
Akihisa Takeuchi, Yasuko Terada, Kentaro Uesugi, Yoshio Suzuki, “Three-dimensional X-ray fluorescence imaging with confocal full-field X-ray microscope,” Nucl. Instrum. Meth. Phys. Res. A 616, 261 (2010);
http://dx.doi.org/10.1016/j.nima.2009.10.054
K. Horiba, Y. Nakamura, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, K. Amemiya, Y. Senba and H. Ohashi, “Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis,” Rev. Sci. Instrum. 82, 113701 (2011);
http://dx.doi.org/10.1063/1.3657156
Tatsuya Kikuzuki, Yuya Shinohara, Yoshinobu Nozue, Kazuki Ito, Yoshiyuki Amemiya, “Determination of lamellar twisting manner in a banded spherulite with scanning microbeam X-ray scattering,” Polymer 51, 1632 (2010);
http://dx.doi.org/10.1016/j.polymer.2010.01.057
Sho Kanzaki, Yasunari Takada, Shumpei Niida, Yoshihiro Takeda, Nobuyuki Udagawa, Kaoru Ogawa, Nobuhito Nango, Atsushi Momose, Koichi Matsuocorrespondenceemail, “Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice,” Am. J. Pathol. 178, 1270 (2011);
http://dx.doi.org/10.1016/j.ajpath.2010.11.063
Akihisa Takeuchi, Kentaro Uesugi and Yoshio Suzuki, “Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics,” J. Synchrotron Rad. 20, 793 (2013);
http://dx.doi.org/10.1107/S0909049513018876
Akihisa Takeuchi, Yoshio Suzuki and Kentaro Uesugi, “Differential phase contrast X-ray microimaging with scanning-imaging x-ray microscope optics,” Rev. Sci. Instrum. 83, 083701 (2012);
http://dx.doi.org/10.1063/1.4739761
扫二维码 关注我们
北京众星联恒科技有限公司
www.top-unistar.com
免责申明
此篇文章内容(含图片)均来源于网络。文章版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。
若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。